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Abstract. The covariant single-time equations of the quantum field theory are formulated in
the relativistic configurational representation. The explicit formulae for the Green functions
corresponding to the scattering states are calculated in this representation. Using the derived
nonhomogeneous equations the scattering problem is solved exactly for certain potentials
(combinations of zero-range potentials). The equations and their solutions are studied in the non-
relativistic limit. The conditions of total reflection, available for such potentials, are investigated.

1. Introduction

In the momentum representation the quasipotential equations for the wavefunction of the two-
particle system [1, 2] (in this paper we consider one space dimension) are analogous to the
Schr̈odinger equation

9q(p) = 2πδ(p − q) +G(0)
q (p)

∫
V (p, k)9q(k)

dk

2π
(1)

where(V = mU)
G(0)
q (p) =

1

q2 − p2 + i0
(2)

and the relativistic equations for the two-particle scattering amplitude are analogous to the
non-relativistic Lippman–Schwinger equation. It is well known that in the non-relativistic
theory the potentialV (p, k) is usually a local one (V (p, k) = V (p − k)), so the Schr̈odinger
equation can easily be derived in the coordinate representation, where it is usually written in
the differential form.

The direct and inverse Fourier transforms

9q(p) =
∫

exp(−ipx)9q(x) dx

V (p − k) =
∫

exp[−i(p − k)x]V (x) dx
(3)

establish the unitary equivalence between the coordinate and momentum representations.
However, for the relativistic equations Fourier analysis is of no use, since the equations in
the coordinate representation are integro-differential (non-local) [3,4]. First of all, relativistic
potentials (quasipotentials)V (p, k) are not local; second, relativistic Green functions in the
momentum representationG(j)

m (Eq;p) contain the square rootEp =
√
p2 +m2, wherem is

the mass of the particle (m1 = m2 = m). For example, the Logunov–Tavkhelidze equation for
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two scalar particles (j = 1) and the Kadyshevsky equation for two spinor particles(j = 2)
contain the following Green functions:

G(1)
m (Eq;p) =

1

E2
q − E2

p + i0
· m
Ep

G(2)
m (Eq;p) =

1

2Eq − 2Ep + i0
· m
E2
p

(4)

respectively. In the latter expression 2Eq is the energy of two particles in the centre-of-
mass system, which for scattering states (2Eq > 2m) can be parametrized as follows:
2Eq = 2

√
q2 +m2. We also consider the modified Logunov–Tavkhelidze(j = 3)† and

modified Kadyshevsky(j = 4) equations, where

G(3)
m (Eq;p) =

1

E2
q − E2

p + i0
G(4)
m (Eq;p) =

1

2Eq − 2Ep + i0
· 1

Ep
. (5)

It is easy to see that all four relativistic Green functions, (4) and (5), in the non-relativistic
limit (m→∞) transform into (2)

lim
m→∞G

(j)
m (Eq;p) = G(0)

q (p) j = 1–4. (6)

Hence, the quasipotential equations (j = 1–4)

9(j)
q (p) = 2πδ(p − q) +G(j)

m (Eq;p)
∫
V (p, k)9(j)

q (k)
dk

2π
(7)

in the non-relativistic limit are transformed into (1). In addition, the quasipotential
wavefunction9(j)

q (p) in the one-dimensional space has only one component both for the
system of scalar particles and for the system of spinor particles, since in the latter case the
wavefunction should be projected on the states with positive energy.

2. Equations in the relativistic configurational representation

Although relativistic quasipotentials are not local they possess the following important
property. For example, the quasipotential of one-boson exchange for the completely scalar
equations(j = 1, 3) has the following form:

V (p, k) ∼= 1

µ2 − (p(2) − k(2))2 − i0
= 1

µ2 − 2m2 + 2p(2)k(2) − i0
(8)

wherep(2) andk(2), the initial and the final two-momenta of the first particle, are given by

p(2) = (p0
(2), p

1
(2)) = (Ep, p) = (m coshχp,m sinhχp) (9)

whereχp is rapidity, sincep(2) andk(2) are on mass ‘hyperbola’‡. Consequently,p(2)k(2) =
m2 cosh(χp−χk) and potential (8) depends on the difference between the rapiditiesV (p, k) =
V (χp − χk). The three-dimensional quasipotentials possess the same property [5,6].

This makes it possible to carry out the transformation to the relativistic configuration
representation (RCR) instead of the transformation to the coordinate representation. The RCR
is introduced with the help of expansion in the principal series of the unitary representation of
the Lorentz group [5,6]. In the three-dimensional space it is equivalent to the expansion in the
functions:

ξ(Er, Ep) =
(
Ep − EpEn

m

)−1−imr

m > 0 06 r <∞. (10)

† It should be noted that the relativistic Green functionG(3) is similar to the non-relativisticG(0).
‡ We only consider the case whenm > 0.
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In the one-dimensional space the transformation to the RCR is realized as the expansion in the
following functions:

ξ(ρ, p) =
(
Ep − p
m

)−imρ

= exp(iχpmρ) m > 0 −∞ < ρ <∞. (11)

Hereρ is the relativistic relative coordinate which is canonically conjugate to the rapidityχp
multiplied by massm. Since

lim
m→∞mχp = lim

m→∞m arcsinh
( p
m

)
= p lim

m→∞ ξ(ρ, p) = exp(ipρ) (12)

then in the non-relativistic limitρ transforms into the ordinary coordinatexwhich is canonically
conjugate to the momentump. We should emphasize here that the expansion in functions (11)
is only possible in the case whenm > 0, that is, when the two-momenta of particles are on
the mass ‘hyperbola’. When the mass is null the transformation to the RCR is impossible and
therefore, in this paper, we do not consider the ultra-relativistic case†.

Equations in the RCR, as a rule, are finite-difference ones with the local potential [5, 6].
However, the investigation of the finite-difference equations, especially for the singular
potentials, is a difficult problem. In addition, as is well known in the general case, every
solution of these equations contains arbitrary ‘i-periodic multipliers’. Formulation of integral
equations in the RCR [7] gives us the possibility:

(i) to preserve the physically obvious description of potentials;
(ii) to get rid of thei-periodic multipliers;

(iii) to consider singularδ-potentials.

There is the same possibility if the non-relativistic integral equations are written in the
coordinate representation. Thus, (1) with the help of (3) can be transformed into

9q(x) = exp(iqx) +
∫
G(0)
q (x, y)V (y)9q(y) dy (13)

where

G(0)
q (x, y) =

1

2π

∫
G(0)
q (p) exp[ip(x − y)] dp = −i

2q
exp(iq|x − y|) (14)

is the non-relativistic Green function for the continuous spectrum.
Let us carry out the following transformation:

9(j)
q (ρ) =

∫
exp(iχpmρ)9

(j)
q (p)

dp

2π
=
∫

exp(iχpmρ)9̃
(j)
q (χp)

m dχp
2π

(15)

9̃(j)
q (χp) = 9(j)

q (p)
Ep

m
=
∫

exp(−iχpmρ
′)9(j)

q (ρ ′) dρ ′ (16)

in (7) whenV (p, k) is the following scalar quasipotential

V (χp − χk) =
∫

exp[−i(χp − χk)mρ ′]V (ρ ′) dρ ′. (17)

Then the equation for the wavefunction9(j)
q (ρ) in the RCR can be written as follows:

9(j)
q (ρ) = exp(iχpmρ) +

∫
G(j)
m (Eq; ρ, ρ ′)V (ρ ′)9(j)

q (ρ ′) dρ ′. (18)

The relativistic Green functions in the RCR are defined as follows:

G(j)
m (Eq; ρ, ρ ′) =

∫
exp[iχpm(ρ − ρ ′)]G(j)

m (Eq;p)
dp

2π
. (19)

† Equations (7) with the Green functions (4) and (5) are not well defined when the mass is null as the Green functions
contain the following factors:|p|−1; (Eq − |p|)−1.
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It is not difficult to see that the following relation:

lim
m→∞G

(j)
m (Eq; ρ, ρ ′) =

∫
exp[ip(ρ − ρ ′)]G(0)

q (p)
dp

2π
= G(0)

q (ρ, ρ
′) (20)

holds for all four functions (4) and (5) in the non-relativistic limit. In order to calculate the
functionsG(j)

m (Eq; ρ, ρ ′) it is necessary to integrate (19) overχq . Then forj = 1 we have the
expression

G(1)
m (Eq; ρ, ρ ′) =

1

2πm

∫
exp[iχpm(ρ − ρ ′)]

cosh2 χq − cosh2 χp + i0
dχp (21)

and analogous ones for all other cases. Explicitly, formulae for the Green functions
G
(j)
m (Eq; ρ, ρ ′) can be obtained using a technique of contour integration

G(1)
m (Eq; ρ, ρ ′) =

−i

K
(1)
q

sinh[( π2 + iχq)m(ρ − ρ ′)]
sinh[π2m(ρ − ρ ′)]

(22)

G(2)
m (Eq; ρ, ρ ′) =

−i

K
(2)
q

sinh[(π + iχq)m(ρ − ρ ′)]
sinh[πm(ρ − ρ ′)] +

(4m coshχq)−1

cosh[π2m(ρ − ρ ′)]
(23)

G(3)
m (Eq; ρ, ρ ′) =

−i

K
(3)
q

cosh[( π2 + iχq)m(ρ − ρ ′)]
cosh[π2m(ρ − ρ ′)]

(24)

G(4)
m (Eq; ρ, ρ ′) =

−i

K
(4)
q

sinh[(π + iχq)m(ρ − ρ ′)]
sinh[πm(ρ − ρ ′)] . (25)

In formulae (22)–(25) and below, the following notations have been used:

K(1)
q = K(2)

q = m sinh 2χq K(3)
q = K(4)

q = 2m sinhχq. (26)

Since limm→∞K
(j)
q = K(0)

q = 2q, we see, using (22)–(25) that the limit relation (20)
holds and hence (18) transforms into (13) in the non-relativistic limit. It should be noted that
if the relativistic quasipotential depends on the mass (V = Vm(ρ)) then the non-relativistic
potential is defined by limm→∞ Vm(ρ). For example, the quasipotential [7]

Vm(ρ) = g

ρ
tanh

(πm
2
ρ
)

(27)

(some superposition of one-boson exchange potentials) in the non-relativistic limit transforms
into the Coulomb potential.

3. Solutions of the relativistic equations withδ-potentials

Our programme for the future includes the investigation of the considered equations with the
quasipotentials derived on the basis of quantum field theory, for instance, with (27). Therefore,
it would be attractive to construct the models of two-particle problems which are solved exactly.
It is clear that such models should have the non-relativistic limit. In this case, above all, we
should consider the potentials for which both the non-relativistic problem and, if it is possible,
the one-particle relativistic problem, i.e. the Dirac equation, are solved exactly.

In the past models of point (or contact) interaction have been much developed in
non-relativistic quantum mechanics (see monographs [8–10]). At the same time the one-
dimensional Schr̈odinger equation with point interactions or their generalizations (such as
the Kronig–Penney model with a periodical superposition ofδ-potentials) [11–13] have also
attracted a lot of attention.

The three-dimensional and one-dimensional Dirac equations withδ-potentials have been
studied recently [14–19]. The one-dimensional Dirac equation has been discussed aiming
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to study models with superposition ofδ-potentials: the Kronig–Penney model [20] and the
relativistic Tamm model [21].

Our aim is to investigate relativistic two-particle equations (18) and (22)–(25) with
δ-potentials, since exact solutions of all four equations can be obtained. The following
important question arises in this context: ‘what kind of quasipotential equation is preferable?’.
However, this problem has so many ‘degrees of freedom’ that we cannot answer this question
precisely [22].

So, to start let us consider equations (18) with

V (ρ) = V δ(ρ) (28)

(V—is real). The solution of (18) with (28) is given by

9(j)
q (ρ) = exp(iχqmρ) +G(j)

m (Eq; ρ, 0)V9(j)
q (0) (29)

9(j)
q (0) = [1−G(j)

m (Eq)V ]−1. (30)

In (30) we use the following notations:

G(j)
m (Eq) = G(j)

m (Eq; ρ, ρ) =
−i

K
(j)
q

[1 + iβjq ] (31)

where for all the Green functions considered, (22)–(25),β
j
q are as follows:

β1
q =

2χq
π

β2
q =

χq

π
+

sinhχq
2

β3
q = 0 β4

q =
χq

π
(32)

and in the non-relativistic limit (q is fixed,m→∞) limm→∞ β
j
q = 0 so that

lim
m→∞G

(j)
m (Eq) =

−i

2q
= −i

K
(0)
q

. (33)

In order to obtain physical information about the penetration and reflection probabilities
let us consider the asymptotic behaviour of the wavefunctions (29) forρ± → ∞. It is not
difficult to see that all the Green functions, (22)–(25), have the following limit behaviour:

G(j)
m (Eq; ρ, ρ ′)|ρ→±∞ =

−i

K
(j)
q

exp[±iχqm(ρ − ρ ′)]. (34)

The asymptotic formulae for wavefunctions are

9(j)
q (ρ)|ρ→∞ = exp(iχqmρ) +A(j)q exp(iχqmρ) (35)

9(j)
q (ρ)|ρ→−∞ = exp(iχqmρ) +B(j)q exp(−iχqmρ). (36)

The amplitude coefficientsA andB (for singleδ-potential (28) they are the same) are given
by

A(j)q = B(j)q =
−i

K
(j)
q

· V

1−G(j)
m (Eq)V

. (37)

CoefficientsA andB are in agreement with the non-relativistic limit (q is fixed,m → ∞),
where

A(0)q = B(0)q =
−iV

2q + iV
. (38)

Another important property of the coefficientsA andB is that the penetration and reflection
coefficients, defined by

P (j)q = |1 +A(j)q |2 R(j)q = |B(j)q |2 (39)



5334 V N Kapshai and T A Alferova

in all four cases comply with the relativistic unitary relation

|1 +A(j)q |2 + |B(j)q |2 = 1. (40)

Let us now consider the following superposition ofδ-potentials (V1,2—are real)

V (ρ) = V1δ(ρ − a) + V2δ(ρ + a). (41)

The wavefunctions of equations (18) with the potential (41) are

9(j)
q (ρ) = exp(iχqmρ) +G(j)

m (Eq; ρ, a)V19
(j)
q (a) +G(j)

m (Eq; ρ,−a)V29
(j)
q (−a). (42)

The asymptotic behaviour of the wavefunctions (42) is given by (35) and (36) as well, but in
this case the amplitude coefficients are defined by

A(j)q =
−i

K
(j)
q

[exp(−iχqma)V19
(j)
q (a) + exp(iχqma)V29

(j)
q (−a)], (43)

B(j)q =
−i

K
(j)
q

[exp(iχqma)V19
(j)
q (a) + exp(−iχqma)V29

(j)
q (−a)]. (44)

The constants9(j)
q (a)and9(j)

q (−a) should be solutions of the following algebraic system:[
1−G(j)

m (Eq)V1 −G(j)
m (Eq; a,−a)V2

−G(j)
m (Eq;−a, a)V1 1−G(j)

m (Eq)V2

] [
9
(j)
q (a)

9
(j)
q (−a)

]
=
[

exp(iχqma)
exp(−iχqma)

]
. (45)

Solutions of this system are defined as follows:

9(j)
q (a) = 1

(j)

1q (a)

1
(j)
q (a)

9(j)
q (−a) = 1

(j)

2q (a)

1
(j)
q (a)

(46)

where

1
(j)

1q (a) = exp(iχqma)[1−G(j)
m (Eq)V2] + exp(−iχqma)G

(j)
m (Eq; a,−a)V2 (47)

1
(j)

2q (a) = exp(−iχqma)[1−G(j)
m (Eq)V1] + exp(iχqma)G

(j)
m (Eq;−a, a)V1 (48)

and1(j)
q (a) is the principle determinant of (45). It is given by the following general expression:

1(j)
q (a) =

2∏
s=1

[1−G(j)
m (Eq)Vs ] − [G(j)

m (Eq; a,−a)]2V1V2 (49)

and

1̃(j)
q (a) = (K(j)

q )21(j)
q (a). (50)

For each of the considered Green functions1̃
(j)
q (a) can be written as follows:

1̃(1)
q (a) =

2∏
s=1

[
K(1)
q +

(
i − 2

χq

π

)
Vs

]
+

sinh2(α + iχ̃q)

sinh2 α
V1V2

1̃(2)
q (a) =

2∏
s=1

[
K(2)
q +

(
i − χq

π
− sinhχq

2

)
Vs

]
−
[

i sinh(2α + iχ̃q)

sinh 2α
− sinhχq

2 coshα

]2

V1V2

1̃(3)
q (a) =

2∏
s=1

[K(3)
q + iVs ] +

cosh2(α + iχ̃q)

cosh2 α
V1V2

1̃(4)
q (a) =

2∏
s=1

[
K(4)
q +

(
i − χq

π

)
Vs

]
+

sinh2(2α + iχ̃q)

sinh2 2α
V1V2.

(51)

Here and later, for brevity, we use the following notations:

χ̃q = 2χqma α = πma. (52)
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In the non-relativistic approximation (q; a are fixed,m→∞) all expressions (51) tend to the
same limit:

1(0)
q (a) = lim

m→∞1
(j)
q (a) =

1

4q2
[(2q + iV1)(2q + iV2) + exp(i4qa)V1V2]. (53)

The amplitude coefficient of transient and reflected,A andB, waves, are given by

A(j)q =
1̃
(j)

Aq(a)

1̃
(j)
q (a)

B(j)q =
1̃
(j)

Bq(a)

1̃
(j)
q (a)

. (54)

For the transient wavẽ1(j)

Aq(a) is given by

i1̃(j)

Aq(a) = K(j)
q (V1 + V2) +D(j)

Aq (a)V1V2 (55)

D
(j)

Aq (a) = 2K(j)
q [G(j)

m (Eq; a,−a) cosχ̃q −G(j)
m (Eq)]. (56)

Since we intend to carry out numerical analysis of the penetration and reflection coefficients,
let us present here, explicit expressions for (56)

D
(1)
Aq(a) = 2i sin2 χ̃q + cothα sin 2χ̃q − 4π−1χq

D
(2)
Aq(a) = D(4)

Aq(a) + sinhχq((coshα)−1 coshχ̃q − 1)

D
(3)
Aq(a) = 2i sin2 χ̃q + tanhα sin 2χ̃q

D
(4)
Aq(a) = 2i sin2 χ̃q + coth 2α sin 2χq − 2π−1χq

(57)

whereχ̃q andα are given by (52). In the non-relativistic limitD(j)

Aq (a) (j = 1–4) transforms
into

D
(0)
Aq(a) = lim

m→∞D
(j)

Aq (a) = 2i sin2 2qa + sin 4qa. (58)

For the reflected wavẽ1(j)

Bq(a) is given by

i1̃(j)

Bq(a) = K(j)
q [V1 exp(iχ̃q) + V2 exp(−iχ̃q)] + D(j)

Bq (a)V1V2 (59)

D
(j)

Bq (a) = 2K(j)
q [G(j)

m (Eq; a,−a)−G(j)
m (Eq) cosχ̃q ]. (60)

The explicit expressions forD(j)

Bq (a) (j = 1–4) are given by

D
(1)
Bq(a) = 2 cothα sinχ̃q − 4π−1χq cosχ̃q

D
(2)
Bq(a) = D(4)

Bq(a)− sinhχq cosχ̃q + sinhχq(coshα)−1

D
(3)
Bq(a) = 2 tanhα sinχ̃q

D
(4)
Bq(a) = 2 coth 2α sinχ̃q − 2π−1χq cosχ̃q .

(61)

The following non-relativistic limit holds

D
(0)
Bq(a) = lim

m→∞D
(j)

Bq (a) = 2 sin(2qa). (62)

Thus, both general expressions for scattering characteristics and their explicit forms have
been calculated for all four quasipotential equations. These expressions tend to the same limit
in the non-relativistic approximation and the amplitude coefficients of transient and reflected
waves are given by†

1 +A(0)q =
4q2

4q2 − 2V1V2 sin2 2qa + i[2q(V1 + V2) + V1V2 sin 4qa]
(63)

B(0)q = −2i · q(V1 + V2) cos 2qa + iq(V1− V2) sin 2qa + V1V2 sin 2qa

4q2 − 2V1V2 sin2 2qa + i[2q(V1 + V2) + V1V2 sin 4qa]
. (64)

† Solution of non-relativistic equation (13) with the potentialV (y) = V1δ(y− a)+V2δ(y + a) gives the same result.
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Figure 1. Reflectivity as a function of rapidityχq form = 1,V1 = V2 = −3 (two holes) (1—R(1),
2—R(2), 3—R(3), 4—R(4)): (a) a = 0.1; (b) a = 1.5.

It is easy to show that non-relativistic formulae forA(0)q andB(0)q ((63) and (64)) if the
parameters of the potential are chosen as follows:V1 = V ; V2 = 0, reduce to (38), derived
for the simple potential (28) (B(0)q coincides with it within the phase factor exp(i2qa)). By

similar arguments the relativistic formulae forA(j)q andB(j)q ((54) with (49), (55) and (59)) for
the same parameters of the potential reduce to (37) (B

(j)
q coincides with it within the phase

factor exp(i2χqma)). It means that the penetration coefficientP
(j)
q and reflection coefficient

R
(j)
q , calculated for the relativistic problem with potential (41), can be directly reduced to the

corresponding ones if the potential is given byV (ρ) = V δ(ρ − a) or V (ρ) = V δ(ρ + a).
Using (63) and (64) it is not difficult to prove that the unitary relation|1+A(0)q |2+|B(0)q |2 = 1

holds. Expressions for the relativistic quantitiesA(j)q andB(j)q are more complicated than their
non-relativistic analogues. But it is possible to check that the unitary relationP

(j)
q +R(j)q = 1

holds for anyj = 1–4 (we have carried out these calculations using the algebraic programming
system REDUCE).

4. Results of numerical calculations

Let us now consider the results of numerical calculations. In figures 1 and 2 the reflection
coefficientsR(j)q = |B(j)q |2 are given as functions of the rapidityχq for fixed parametersa,
V1 = V2 = V < 0 andm = 1. As we can see the reflection coefficientsR

(j)
q (for anyj = 1–4)

vanishes whenV1 = V2 = V provided that

2K(j)
q cosχ̃q +D(j)

Bq (a)V = 0 j = 1–4. (65)

The non-relativistic reflectivity has the same behaviour. Explicitly, formulae for the condition
when the potential is completely penetrable forj = 1, 3 are as follows

tan 2χqma =
[

2χq
π
− m sinh 2χq

V

]
tanhπma j = 1 (66)

tan 2χqma = −2m sinhχq
V

cothπma j = 3. (67)
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Figure 2. Reflectivity as a function of rapidityχq for m = 1, V1 = V2 = −18 (two holes):
(a) a = 0.1; (b) a = 1.5.

Figure 3. Reflectivity as a function of widtha for j = 3,V1 = V2 = 18 (two barriers): (a) χq = 2;
(b) χq = 4.

As we can see that each of these transcendental equations (65) with respect toχq has an
infinite set of solutionsχ(j)qn . The solutions of (66) and (67) forV < 0 anda > |V |−1+(πm)−1

are equal to

χ(j)
qn
= 1

2ma

(π
2

+ πn− εn
)

n = 1, 2, 3, . . . (68)

whereεn > 0 are decreasing for large values ofn. For example, fora = 1.5 we have
χ
(j)
qn
∼= (π/6)(1 + 2n) (see figure 1(b)). It should be noted here that if the parameter|V |

increases then the correctionsεn increase too.
Using similar arguments we can analyse the reflectivity as a function of widtha for

fixed V1, V2, χq . Since the curves have a similar form for all four equations in figure 3
we plot the curves forR(3)q . Solving equation (67) with respect toa we again obtain an
infinite set of solutionsa(3)n . Moreover, the difference betweenan+1 and an is equal to
1an = an+1 − an ∼= π(2χqm)−1 and if n increases the latter relation holds with a high
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Figure 4. Reflectivity as a function of rapidityχq for a = 10,m = 1,V1 = V2 = V0 (two barriers),
curve 0 corresponds to the non-relativisticR(0): (a) V0 = −0.5; (b) V0 = 0.5.

accuracy (see figure 3).
The curves forR(j)q have appreciably different behaviour for differentj (see figures 1–3).

Therefore, it seems natural to compare, in detail, the relativisticR
(j)
q with the non-relativistic

one. The point is that the curves in figures 1–3 are essentially relativistic, since|V |m−1 = 3, 18
and 06 χq 6 6. In the non-relativistic approximation, whenV is fixed andm → ∞ , the
following inequalities should be satisfied:|V |m−1 � 1 andqm−1 � 1, but this implies that
χq � 1. To compare the relativistic and non-relativistic results in the above-mentioned range
of values let us consider the following parameters:|V | = 0.5m; 06 χq 6 0.5. To emphasize
the descriptive behaviour of the curves let us consider a large value of the parametera. In
figure 4 the relativistic reflection coefficientsR(j)q (for j = 1–4) and non-relativisticR(0)q are
given as functions of the rapidityχq . In the region of small values ofχq the relativistic results
coincide well with the non-relativistic ones.

Let us now consider, in more detail, the cases whereV1, V2 > 0 (two barriers) and
V1 · V2 < 0 (barrier–hole) for|V | > m. The corresponding curves for the reflectivityR(j)q as
a function of the rapidityχq are given in figures 5 and 6. A typical feature of these curves is
the existence of points where the reflectivity is equal to unity, except forR(3)q in the case of
two barriersδ-potential. Numerical analysis does not, in principle, determine whether unity is
approached exactly. Naturally, it is necessary to analyse the reflectivity behaviour analytically
and locate the value of rapidityχq where the penetration coefficient vanishes, that is, the
potential becomes impenetrable. This analysis has been made.

At first sight it seems impossible that the penetrationP = |1 +A|2 is equal to zero, since
the amplitude 1 +A for all cases is complex-valued and vanishes only if both the imaginary
and real parts are equal to zero at the same time. It seems to us that this requesta priori cannot
be satisfied by changing only the parameterχq(V1;V2; a—are fixed). But, if we present the
coefficient 1 +A as follows:

1 +A(j)q =
1̃
(j)

(1+A)q(a)

1̃
(j)
q (a)

(69)

then in all the cases the equality Im̃1(j)

(1+A)q = 0 holds identically. Hence, it is necessary to

consider the condition for the real part of the numerator Re1̃
(j)

(1+A)q only. The explicit formulae
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Figure 5. Reflectivity as a function of rapidityχq for a = 0.05,m = 1, V1 = V2 = V0 (two
barriers): (a) V0 = 3; (b) V0 = 30.

Figure 6. Reflectivity as a function of rapidityχq for a = 0.2, m = 1, V1 = −V2 = V0
(barrier–hole): (a) V0 = 5; (b) V0 = 50.

for these conditions when the potential is impenetrable for all cases are given by

2∏
s=1

[
K(1)
q − 2

χq

π
Vs

]
− sin2 χ̃q

sinh2 α
V1V2 = 0 (70)

2∏
s=1

[
K(2)
q −

(
χq

π
+

sinhχq
2

)
Vs

]
+ sin2(χ̃q)V1V2

−[coth 2α sinχ̃q + sinhχq(2 coshα)−1]2V1V2 = 0 (71)

(K(3)
q )

2 +
sin2 χ̃q

cosh2 α
V1V2 = 0 (72)

2∏
s=1

[K(4)
q −

χq

π
Vs ] − sin2 χ̃q

sinh2 2α
V1V2 = 0. (73)
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Let us now study non-trivial solutions (χq > 0) of these equations (they do not change if
we replaceχq by−χq). First let us consider the simplest case whereV1 = V ; V2 = 0, that is,
the potential is equal toV (ρ) = V δ(ρ − a). In this case the conditions for impenetrability of
the potential (70)–(73) do not contain the parametera and are given by

K(j)
q − βjqV = 0. (74)

Explicitly, for j = 1 andj = 4 we have

sinh 2χq
2χq

= 1

π
· V
m

sinhχq
χq

= 1

2π
· V
m
. (75)

The functionf (x) = sinhx/x is monotonically increasing forx > 0, moreover,f (0) = 1.
Consequently, there is no solution of the equationf (x) = b provided thatb < 1. But if b > 1,
this equation has only one solution(x > 0) which we denote byx = ϕ(b). Obviously, the
functionϕ(b) is monotonically increasing forb > 1 and, by the way,

χ(1)q (V ) = 1

2
ϕ

(
1

π
· V
m

)
χ(4)q (V ) = ϕ

(
1

2π
· V
m

)
. (76)

We carried out similar calculations forj = 2, 3 and forj = 2 obtained the same results,
for j = 3 equation (74) has no solutions. Thus, forj = 1, 2, 3 andV > V

(j)

min, where

V
(1)
min = πm V

(2)
min = 4π(2 +π)−1m V

(4)
min = 2πm (77)

the condition for total reflection (74) for the potentialV (ρ) = V δ(ρ−a) has only one solution
χ
(j)
q (V ), moreover, dχ(j)q (V )/dV > 0.

It should be noted here that the effect of total reflection is valid for the one-dimensional
Dirac equation with scalarδ-potential (and with superposition of scalar and vectorδ-potentials)
as well [16]. Nevertheless, this effect only exists provided that the dimensionless coupling
constantg is equal to 2:g = 2. It is to be emphasized that the effect of total reflection for the
Dirac equation atg = 2 is valid for any value of rapidity (or momentum). In this paper the
effect of total reflection is valid for any value of the dimensionless coupling constantV/m, if
the inequalityV/m > V

(j)

min/m holds, but ifV/m (V > Vmin) is fixed this effect only exists for
a unique value of the rapidityχq .

Now let us turn our attention to the general conditions for impenetrability of the potential
given by the superposition of twoδ-potentials. To locate the points(a, χq)where the potential
is impenetrable let us fix the parameterV . Let us first consider the region of large values of the
parametera (am� 1), where the conditions of impenetrability can be simplified as follows

[K(j)
q − βjqV1][K(j)

q − βjqV2] = 0. (78)

For j = 3 there is no solution of (78). Forj = 1, 2, 4 there is solutionχ(j)q (V1)(χ
(j)
q (V2))

provided thatV1 > V
(j)

min(V2 > V
(j)

min). It means, for example, that if both parametersV1 and
V2 satisfy the following inequality:V1,2 > V

(j)

min, then there are two values of rapidityχq
(am� 1) for which the effect of total reflection can be observed.

Second, let us consider the region of small values of the parametera (am � 1) and not
too large values of the rapidityχq . In this region equations (70)–(73) are simplified as well
and forj = 1, 2, 4 are given by

K(j)
q − βjq (V1 + V2) = 0. (79)

The solution of (79) is equal toχq = χ(j)q (V1 +V2) (see (76)) provided thatV1 +V2 > V
(j)

min. It
means that ifam� 1 the impenetrability conditions for the superposition ofδ-potentials (41)
is similar to the corresponding one for the potential(V1 + V2)δ(ρ) and this fact is physically
correct.
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Forj = 3, am� 1 and not too large value of rapidityχq equation (72) can be written as
follows

(K(3)
q )

2 + (2χqma)
2V1V2 = 0. (80)

If V1 · V2 > 0 the last equation has no solutions (and (72) in the general case as well), if
V1 ·V2 < 0 it can be reduced tof (χq) = a

√−V1V2 and hasχq = ϕ(a
√−V1V2) as a solution

provided thata
√−V1V2 > 1. Fora <

√−V1V2 there is no solution of equation (80). It means
that, if the parametera tends to zero, the total reflection for the superposition ofδ-potentials
(41) (j = 3) is also absent as for the singleδ-potential (28).

In the other regions of the plane(a, χq) each of the equations has to be studied separately.
For instance, let us consider equation (70) forχqma � 1. Using the following notations
(ξ > 1; ζ > 1):

ξ = sinh 2χq
2χq

ζ = sinhπma

πma
vs = Vs

πm
(81)

equation (80) can be reduced to

ζ 2 = v1v2

(ξ − v1)(ξ − v2)
(82)

moreover, the region(ξ − 1)(ζ − 1)� 1 corresponds to the regionχqma � 1.
Let us considerζ in the following limit: ζ = 1. Thus, ifv1 + v2 > 1 thenξ = v1 + v2

and, hence, 2χq = ϕ(v1 + v2). If v1 + v2 < 1 then there is no solution. In another limitξ = 1
from (82) we have

ζ 2 = ζ 2
0 =

v1v2

(1− v1)(1− v2)
. (83)

The inequalityζ 2
0 > 1 is valid for one of the following cases:

(i) v1,2 > 1,
(ii) 0 < v1,2 < 1; v1 + v2 > 1,

(iii) v1 > 1; v2 < 0; v1 + v2 < 1.

If the relationζ = f (2χ) ∼= 1 + 2χ2/3 holds(χ � 1) then from (82) we obtain

ζ = ζ0

[
1− χ

2

3

(
1

1− v1
+

1

1− v2

)]
. (84)

Figure 7. Solution of the condition for total reflection (70) for fixedV1 andV2, m = 1 (j = 1):
(a) V1 = 5,V2 = 10 (v1,2 < 1); (b) V1 = 2,V2 = 3 (v1,2 < 1; v1 + v2 > 1).
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In figure 7 we represent results of the numerical calculation of the impenetrability condition
(70) for fixedV1 andV2.

To simplify the investigation of equations (70)–(73) it is necessary to fix the parameters
χq anda and solve these equations with respect toV1,2. For example, for the curves presented
in figure 6, that is, forV1 = −V2 = V0, it follows from (70) and (72) that

V0 = ± πm sinh 2χq sinhπma

[4χ2
q sinh2(πma)− π2 sin2(2χqma)]1/2

j = 1 (85)

V0 = ±2m sinhχq coshπma

sin 2χqma
j = 3. (86)

It means that forj = 1 (and forj = 4 as well) there is such a value of the parameterV0 for
which the total reflection is observed for any value of the ‘width’a and rapidityχq . Forj = 3
for all the points (a, χq), except for the points on the curves sin(2χqma) = 0, this effect is also
present. Forj = 2 the region of values of the parametersa andχq , where the total reflection
is absent for any value ofV1 = −V2, is determined in a complicated way.

For example, let us consider (85). Ifχq = 2.19, a = 0.2,m = 1 thenV = 50. On the
other hand, it follows from (86) thatV = 50 if χq = 3.73, a = 0.2,m = 1. This fact is in
agreement with the results presented in figure 6.
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