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Abstract. The covariant single-time equations of the quantum field theory are formulated in
the relativistic configurational representation. The explicit formulae for the Green functions
corresponding to the scattering states are calculated in this representation. Using the derived
nonhomogeneous equations the scattering problem is solved exactly for certain potentials
(combinations of zero-range potentials). The equations and their solutions are studied in the non-
relativistic limit. The conditions of total reflection, available for such potentials, are investigated.

1. Introduction

In the momentum representation the quasipotential equations for the wavefunction of the two-
particle system [1, 2] (in this paper we consider one space dimension) are analogous to the
Schidinger equation

dk
W) = 2150 = )+ GO ) [ V(w05 (1)

where(V = mU)

O, —
G, (p)= 2= 2410 (2)
and the relativistic equations for the two-particle scattering amplitude are analogous to the
non-relativistic Lippman—Schwinger equation. It is well known that in the non-relativistic
theory the potentiaV (p, k) is usually a local oneW(p, k) = V(p — k)), so the Sclizdinger
equation can easily be derived in the coordinate representation, where it is usually written in
the differential form.

The direct and inverse Fourier transforms

v, (p) = /exp(—ipx)\llq(x) dx

Vip—k) = /exp[—i(p —k)x]V(x)dx

establish the unitary equivalence between the coordinate and momentum representations.
However, for the relativistic equations Fourier analysis is of no use, since the equations in
the coordinate representation are integro-differential (non-local) [3,4]. First of all, relativistic
potentials (quasipotential$)(p, k) are not local; second, relativistic Green functions in the
momentum representaticih,ﬁ{)(E,,; p) contain the square rodt, = /p? + m?, wherem is

the mass of the particled; = m, = m). For example, the Logunov—Tavkhelidze equation for

®3)
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two scalar particlesj(= 1) and the Kadyshevsky equation for two spinor parti¢les= 2)
contain the following Green functions:

1 m
2E, — 2E, +i0 EI%

m

G,(,;I')(Eq;}?):ﬁ'—
E2—E2+i0 E,

GP(E,; p) = 4

respectively. In the latter expressioE2is the energy of two particles in the centre-of-
mass system, which for scattering state€ (2> 2m) can be parametrized as follows:

2E, = 2,/q°>+m?. We also consider the modified Logunov—Tavkhelidze= 3)t and
modified Kadyshevsky; = 4) equations, where

1 1
2E,—2E,+i0 E,
Itis easy to see that all four relativistic Green functions, (4) and (5), in the non-relativistic
limit (m — oo) transform into (2)

lim GV(E;:p)=GOp)  j=1-4 (6)

m—0oQ

Hence, the quasipotential equatioris£ 1-4)

1
GCNE,;p) = —5—5— GW(Ey; p) = (5)

m 2 _F2 4 m
Eq Ep i0

. . . dk
W) = 2150~ 0) + G (Eyi p) [ Vo 05 ™

in the non-relativistic limit are transformed into (1). In addition, the quasipotential
Wavefunction\lfé”(p) in the one-dimensional space has only one component both for the
system of scalar particles and for the system of spinor particles, since in the latter case the
wavefunction should be projected on the states with positive energy.

2. Equations in the relativistic configurational representation

Although relativistic quasipotentials are not local they possess the following important
property. For example, the quasipotential of one-boson exchange for the completely scalar
equationgj = 1, 3) has the following form:

1 1
12— (pa) —k@)?—i0 2 —2m? + 2p ke —i0
wherep ) andky), the initial and the final two-momenta of the first particle, are given by

Vip k)= (8)

P@ = (pY). plzy) = (E,. p) = (mcoshy,, msinhy,) ©)

wherey, is rapidity, sincep; andk, are on mass ‘hyperbola’t. Consequengly k) =
m? cosh(x, — xx) and potential (8) depends on the difference between the rapitiitiesk) =
V(x, — xx). The three-dimensional quasipotentials possess the same property [5, 6].

This makes it possible to carry out the transformation to the relativistic configuration
representation (RCR) instead of the transformation to the coordinate representation. The RCR
is introduced with the help of expansion in the principal series of the unitary representation of
the Lorentz group [5, 6]. In the three-dimensional space it is equivalent to the expansion in the
functions:

E — bn —1—imr
5(7,]3)=<p—pn) m > 0 0<r < o0. (10)
m

t It should be noted that the relativistic Green functi®® is similar to the non-relativisticG ©@.
¥ We only consider the case when> 0.
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In the one-dimensional space the transformation to the RCR is realized as the expansion in the
following functions:

E,—p

—imp
E(p,p) = < ) = exp(ix,mp) m >0 —00 < p < 00. (11)

Herep is the relativistic relative coordinate which is canonically conjugate to the rapigity
multiplied by massn. Since

Nim mx, = lim m arCSi”“(%) =p lim &(p, p) = explipp) (12)
theninthe non-relativistic limip transforms into the ordinary coordinatevhich is canonically
conjugate to the momentum We should emphasize here that the expansion in functions (11)
is only possible in the case when > 0, that is, when the two-momenta of particles are on
the mass ‘hyperbola’. When the mass is null the transformation to the RCR is impossible and
therefore, in this paper, we do not consider the ultra-relativistic caset.

Equations in the RCR, as a rule, are finite-difference ones with the local potential [5, 6].
However, the investigation of the finite-difference equations, especially for the singular
potentials, is a difficult problem. In addition, as is well known in the general case, every
solution of these equations contains arbitrarpériodic multipliers’. Formulation of integral
equations in the RCR [7] gives us the possibility:

(i) to preserve the physically obvious description of potentials;
(ii) to get rid of thei-periodic multipliers;
(iii) to consider singulas-potentials.

There is the same possibility if the non-relativistic integral equations are written in the
coordinate representation. Thus, (1) with the help of (3) can be transformed into

W, = expligx) + [ GOt 3V, 00 dy (13)
where
1 . —i .
Gy (6, y) = o / GO (p) explip(x — )]dp = — expliglx -y (14)
T 2q

is the non-relativistic Green function for the continuous spectrum.
Let us carry out the following transformation:

v (p) = / exp(ixpmp)w;”(p)dgp = / exp(ixpmp)\if;”(xp)mzdf” (15)

B0 = 0 ()2 = [ expt=imp) v o) o (16)
in (7) whenV (p, k) is the following scalar quasipotential

V=0 = [ @ity - mmelV () do' (17)
Then the equation for the wavefunctid{jj)(p) in the RCR can be written as follows:

(o) = exptizme) + [ G(Ey p. o)V ()W () 8 (18)

The relativistic Green functions in the RCR are defined as follows:
G (Eqgp,p) = /exp[ixpmoo — PG (Ey; p)g—i. (19)

T Equations (7) with the Green functions (4) and (5) are not well defined when the mass is null as the Green functions
contain the following factorsp|~%; (£, — |p) 2.
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It is not difficult to see that the following relation:
. 7 / . / d A
lim GL(Egip.p') = /exp[lp(p —p )]Gf,o)(p)—p =GPp.p)  (20)

holds for aII four functions (4) and (5) in the non-relativistic limit. In order to calculate the
functionsGY/ (Eq, p, p') itis necessary to integrate (19) oyer. Then forj = 1 we have the
expression

1 / explix,m(p — p')]
2tm J costt x, — costf x, +i0
and analogous ones for all other cases. Explicitly, formulae for the Green functions
G,(,{)(Eq; 0, p") can be obtained using a technique of contour integration

—i sinh[(5 +ix,)m(p — p"]

GM(E,; p,p) = (21)

G E.:p,p)= _ 22
m ( q Y p) K;l) Slnh[%m(,o _ )0/)] ( )
—i sinh[(r +ix,)m(p — p") (4m coshy,)~1
GO (Ey: p. p') = —p 00T 21 — 2] Mol (23)
K, sinhfzm(p — p")] coshm(p — p)]
—i cosh(7 +ix,)m(p — p")]
G (Ey; p,p) = z__~1 24
m (Eqip,p) K& coshEm(p— o] (24)
i sinh[( +ixg)m(p — p")]
GH(E —! sin 4 25
(a0 P) = T Sinrm(o — 1] )
In formulae (22)—(25) and below, the following notations have been used:
K" =K®? =msinh2y, K® =K = 2msinhy,. (26)

Since lim, .o K\ = K = 2q, we see, using (22)—(25) that the limit relation (20)
holds and hence (18) transforms into (13) in the non-relativistic limit. It should be noted that
if the relativistic quasipotential depends on the mass= V,,(p)) then the non-relativistic
potential is defined by ligp_. », Vix (0). For example, the quasipotential [7]

Vo) = tanh(—mp) 27)

(some superposition of one-boson exchange potentials) in the non-relativistic limit transforms
into the Coulomb potential.

3. Solutions of the relativistic equations withd-potentials

Our programme for the future includes the investigation of the considered equations with the
quasipotentials derived on the basis of quantum field theory, for instance, with (27). Therefore,
itwould be attractive to construct the models of two-particle problems which are solved exactly.
It is clear that such models should have the non-relativistic limit. In this case, above all, we
should consider the potentials for which both the non-relativistic problem and, if it is possible,
the one-particle relativistic problem, i.e. the Dirac equation, are solved exactly.

In the past models of point (or contact) interaction have been much developed in
non-relativistic quantum mechanics (see monographs [8-10]). At the same time the one-
dimensional Sclidinger equation with point interactions or their generalizations (such as
the Kronig—Penney model with a periodical superpositios-pbtentials) [11-13] have also
attracted a lot of attention.

The three-dimensional and one-dimensional Dirac equationsdwithtentials have been
studied recently [14-19]. The one-dimensional Dirac equation has been discussed aiming
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to study models with superposition &fpotentials: the Kronig—Penney model [20] and the
relativistic Tamm model [21].

Our aim is to investigate relativistic two-particle equations (18) and (22)—(25) with
3-potentials, since exact solutions of all four equations can be obtained. The following
important question arises in this context: ‘what kind of quasipotential equation is preferable?’.
However, this problem has so many ‘degrees of freedom’ that we cannot answer this question

precisely [22].
So, to start let us consider equations (18) with
Vp) =Vi(p) (28)
(V—is real). The solution of (18) with (28) is given by
W (p) = explixgmp) + G (Ey; p, )V W (0) (29)
W) =[1-GPEHV]I (30)
In (30) we use the following notations:
. . —i o
G (E)) = Gy (Egi p. p) = W[l +ip]] (31)
where for all the Green functions considered, (22)—(3§)are as follows:
2x Xs  Sinhy, X
1 q 2 q q 3 4 q
e e (52)

and in the non-relativistic limity is fixed,m — o0) lim,,_, ,Bj = 0 so that

. ; — —I
lim GV(E) = — =

m—00 26] - K;O)' (33)

In order to obtain physical information about the penetration and reflection probabilities
let us consider the asymptotic behaviour of the wavefunctions (29)for> oo. It is not
difficult to see that all the Green functions, (22)—(25), have the following limit behaviour:

. —i .
G (Eq: po P)lpstoe = oy EXPEEXgm(p = ). (34)
q
The asymptotic formulae for wavefunctions are
W (0)]pso00 = €XPAixgmp) + A explixgmp) (35)
W (D) ps—00 = EXRi xgmp) + BY €XD(—ixgmp). (36)

The amplitude coefficientd and B (for singles-potential (28) they are the same) are given
by

AV — pU) — _i. . V )

KD 1-GlEHV

CoefficientsA and B are in agreement with the non-relativistic limit (s fixed,m — o0),
where

(37)

© _ —iv

a 2g +iV’
Another important property of the coefficierdsand B is that the penetration and reflection
coefficients, defined by

Pq(j) — |1+Al(1j)|2 R;j) — |B;j)|2 (39)

0 _
A9 =B (38)
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in all four cases comply with the relativistic unitary relation

[1+ADP+|BY)? = 1. (40)
Let us now consider the following superpositionsepotentials {1 ,—are real)
V(p) =Vid(p —a) + V28(p +a). (41)
The wavefunctions of equations (18) with the potential (41) are
W (p) = explixymp) + G (Eg; p, )ViW (@) + G (Eg; p, —a) VoW (—a).  (42)

The asymptotic behaviour of the wavefunctions (42) is given by (35) and (36) as well, but in
this case the amplitude coefficients are defined by

, —i _ . , .
AY) = — oy lexp(—i Xgma) ViV (a) + explixgma) VoW (—a)], (43)
Kl]
. —i _ . _ .
BY) = — gy lexn( Xqma)V1¥ (a) + exp(—ixgma) VoWl (—a)]. (44)
K‘]

The constant®,’’ («) and¥,’ (—a) should be solutions of the following algebraic system:

1-GPEMWL ~GP(Ega,~aV2 [ w@ | [ explix,ma) 45
[—GE,P(Eq; —a,a)Vi  1-GP(EQ)V, ] [\If;”(—a)] a [exp(—ixqma)] - @)
Solutions of this system are defined as follows:

4 A(j)(a) . A(j)(a)
v (a) = —& v (—a) = —2% (46)
Ay’ (a) Ag(a)
where
A (@) = explixgma)[l — G (E) Vo] + exp(—ix,ma) G (Eg: a, —a)V, (47)
A (@) = exp(—ix,ma)[l — G (E) V1] + explix,ma) G (E,: —a, a)Vs (48)
andAf/)(a) is the principle determinant of (45). Itis given by the following general expression:
2
AP @) =1 - GP(EHV] - [GH (Eyi a. —a)]* V1V, (49)
s=1
and
AP (@) = (K{?AY (). (50)

For each of the considered Green functic&{,é) (a) can be written as follows:

2 . . n
~ X sinkP(a +i%,)
AP @ =T] [K;D + (| - 2—;) Vs] + 22 Xy,

s=1

sintf o
2 . - .. . 2
- ) hy isinh(Qa +ix,)  sinhy
AQ@) =TT k@ + (i— %o 5% ), | a) _ | vy
¢ @ H[ 1 T 2 sinh 2x 2coshy | 17
2 cost (o +i%,) &1
A® — K® 4+ iv,]+ == Ay
¢ @ Q[ a ] cost o 17
- 2 inP(2a +i%,)
AO@) =TT[k® + (i = Xa)y, ]+ ML TN )
q @ 1_[[ a <I 7r> ] sink? 2« 1

Here and later, for brevity, we use the following notations:
Xg = 2xqma a = mwma. (52)
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In the non-relativistic approximatio { a are fixed;n — o0) all expressions (51) tend to the
same limit;

AP (@) = lim AP (a) = %[(Zc] +iV1)(2g + Vo) + explidga) Vi Vo). (53)

The amplitude coefficient of transient and reflecté@nd B, waves, are given by

X 0) <)
G = 2@ gy Ba(@) (54)
“ AP AP
For the transient wava ;) (a) is given by
iAD (@) = K (Vi + Vo) + DY) (@) V1 V2 (55)
D{)(a) = 2KV [GY (Ey; a, —a) cosg, — GY(E)]. (56)

Since we intend to carry out numerical analysis of the penetration and reflection coefficients,
let us present here, explicit expressions for (56)

DS)(a) = 2isir? g, + cotha sin 2%, — 47 'y,

D) (a) = D) (a) + sinhy, ((cosha) ~* coshg, — 1)
DY (a) = 2isir? g, + tanha sin 27,

D)(a) = 2isir? §, + coth 2 sin 2x, — 27y,

(67)

wherey, anda are given by (52). In the non-relativistic Iimnﬁ{g (a) (j = 1-4) transforms
into

D) = lim_ D{)(a) = 2isin? 2qa + sin4a. (58)
For the reflected Wavég; (a) is given by

iAY) (@) = K [Viexplizy) + V2 exp(—i 7)) + Dy (@)ViVa (59)

DY) (a) = 2K [GY (Eq; a, —a) — G (E,) cos¥,]. (60)

The explicit expressions fdbg;; (a) (j = 1-4) are given by

D) (a) = 2cotha sing, — 4 'y, cosg,

Df% (@) = Dg; (a) — sinhy, cosj, + sinhy, (cosha)™* o
D?; (a) = 2tanha sing,

The following non-relativistic limit holds
D)@) = lim DY) (@) = 2sin2ga). ©2)

Thus, both general expressions for scattering characteristics and their explicit forms have
been calculated for all four quasipotential equations. These expressions tend to the same limit
in the non-relativistic approximation and the amplitude coefficients of transient and reflected
waves are given byt

2
1+A0 = | 4 . (63)
4g2 — 2V1 Vo Sir? 2ga +i[2q (V1 + V) + V1 Vs Sin 4ga]
o q(V1+ Vo) cos Zja +ig(Vy — Vo) sin2ga + ViV, sin 2ga

4g2 — 2V1 Vo Si? 2ga +i[2g (V1 + Vo) + ViVasindga]

O _
BO = (64)

T Solution of non-relativistic equation (13) with the potentidly) = V18(y — a) + V28(y +a) gives the same result.
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Figure 1. Reflectivity as a function of rapidity, form = 1,V = V, = —3 (two holes) (1—=RD,
2—R@ 3—R® 4—R™): (@)a =0.1; (b) a = 1.5.

It is easy to show that non-relativistic formulae t@g‘” and B;‘)) ((63) and (64)) if the
parameters of the potential are chosen as folloWis= V; V, = 0, reduce to (38), derived
for the simple potential (28)1‘1;0) coincides with it within the phase factor i@ga)). By
similar arguments the relativistic formulae faf”’ andB.’ ((54) with (49), (55) and (59)) for
the same parameters of the potential reduce to (B?’Y coincides with it within the phase
factor exgi2x,ma)). It means that the penetration coeffmﬂ?jt’) and reflection coefficient
R;j ), calculated for the relativistic problem with potential (41), can be directly reduced to the
corresponding ones if the potential is givenWBypo) = V3(po —a) or V(p) = Vé(p +a).

Using (63) and (64) itis not difficult to prove that the unitary relatibrA " |+ B |* = 1
holds. Expressions for the relativistic quantitie$’ andB}’’ are more complicated than their
non-relativistic analogues. But it is possible to check that the unitary relﬂgﬁﬁﬁ- R;j) =1
holds for any; = 1-4 (we have carried out these calculations using the algebraic programming
system REDUCE).

4. Results of numerical calculations

Let us now consider the results of numerical calculations. In figures 1 and 2 the reflection
coefficientsk}” = |B}”|2 are given as functions of the rapidigy, for fixed parameters,
V1=V, =V < 0andn = 1. As we can see the reflection coefﬂmeﬁf,é) (foranyj = 1-4)
vanishes wheiv; = V, = V provided that

2K ) cosxy + D)@V =0 j=1-4 (65)

The non-relativistic reflectivity has the same behaviour. Explicitly, formulae for the condition
when the potential is completely penetrable foe 1, 3 are as follows

2 sinh

tan 2x,ma = [ﬁ — %qu} tanhmma j=1 (66)
i
2m sinh

tan 2x,ma = _ 2 cothema j=3. (67)

Vv
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Figure 2. Reflectivity as a function of rapidity, for m = 1, V1 = V, = —18 (two holes):
(8 a=0.1;()a =15.
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Figure 3. Reflectivity as a function of width for j = 3, V1 = V, = 18 (two barriers): &) x, = 2;
(0) x4 = 4.

As we can see that each of these transcendental equations (65) with respelttoan
infinite set of solutiong.%'. The solutions of (66) and (67) fof < Oanda > |V |1+ (m)~*

are equal to

0 —

an £+nn—8n> n:1,2,3,... (68)

2ma (2

wheree, > 0 are decreasing for large valuesaf For example, fom = 1.5 we have
x%) = (/6)(1 + 2n) (see figure 1p). It should be noted here that if the parametet
increases then the correctiansincrease too.

Using similar arguments we can analyse the reflectivity as a function of widtr
fixed V1, V2, x,. Since the curves have a similar form for all four equations in figure 3
we plot the curves foﬂ?}f”. Solving equation (67) with respect towe again obtain an
infinite set of solutionsz®. Moreover, the difference between.; anda, is equal to

Aa, = dpe1 — a, = 71(2qu)*1 and if n increases the latter relation holds with a high
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Figure 4. Reflectivity as a function of rapidity, fora = 10,m = 1, V1 = V2 = Vg (two barriers),
curve 0 corresponds to the non-relativisii®): (a) Vo = —0.5; (b) Vo = 0.5.

accuracy (see figure 3).

The curves forR;” have appreciably different behaviour for differgnisee figures 1-3).
Therefore, it seems natural to compare, in detail, the relativiificwith the non-relativistic
one. The pointis that the curves in figures 1-3 are essentially relativistic,) ¥inee! = 3, 18
and 0< x, < 6. In the non-relativistic approximation, whénis fixed andn — oo , the
following inequalities should be satisfietl/ |m =1 <« 1 andgm~! « 1, but this implies that
xq < 1. To compare the relativistic and non-relativistic results in the above-mentioned range
of values let us consider the following parametg#sf = 0.5m; 0 < x, < 0.5. To emphasize
the descriptive behaviour of the curves let us consider a large value of the paraméter
figure 4 the relativistic reflection coefficieng’ (for j = 1-4) and non-relativisti® ® are
given as functions of the rapidity,. In the region of small values ¢f, the relativistic results
coincide well with the non-relativistic ones.

Let us now consider, in more detail, the cases whHeéreV, > 0 (two barners) and
V1 - Vo < 0 (barrier-hole) fotV| > m. The corresponding curves for the reflectlvR)/ as
a function of the rapidity, are given in figures 5 and 6. A typical feature of these curves is
the existence of points where the reflectivity is equal to unity, excepRﬁérin the case of
two barrierss-potential. Numerical analysis does not, in principle, determine whether unity is
approached exactly. Naturally, itis necessary to analyse the reflectivity behaviour analytically
and locate the value of rapidity, where the penetration coefficient vanishes, that is, the
potential becomes impenetrable. This analysis has been made.

At first sight it seems impossible that the penetratfor: |1 + A|? is equal to zero, since
the amplitude 1 A for all cases is complex-valued and vanishes only if both the imaginary
and real parts are equal to zero at the same time. It seems to us that this aganiggscannot
be satisfied by changing only the parametgfVi; Vo; a—are fixed). But, if we present the
coefficient 1 +A as follows:

(J)
1+AY = —(1+A)q @

q A(J)(a) (69)

then in all the cases the equality mjm)q = 0 holds identically. Hence, it is necessary to
consider the condition for the real part of the numeratoxil-gémq only. The explicit formulae
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Figure 5. Reflectivity as a function of rapidity, for a = 0.05,m = 1, V1 = V> = Vp (two
barriers): &) Vo = 3; (b) Vo = 30.
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Figure 6. Reflectivity as a function of rapidity, fora = 02,m = 1, V1 = =V, = W

(barrier—hole): ¢) Vo = 5; (b) Vo = 50.

for these conditions when the potential is impenetrable for all cases are given by

sir 3
I1 [K(l) . zﬁvs] _ M Xy, =0 (70)
ok L n sinkf «
2 .
sinh Do
I1 [K;” - (ﬁ - —Xq) vx] + it (7) V1V
pollc T 2
—[coth 2¢ sin g, + sinhy, (2 coshw) ~]?V;V, = 0 (71)
.n2 ~
(K@ + 1 Sy y, 0 (72)
cosif
2 . ~
Sir? ¥
K@ Xy V1V, = 0. 73
S_ll[ g sinff 20+ 2 (73)
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Let us now study non-trivial solutiong/ > 0) of these equations (they do not change if
we replacey, by —x,). First let us consider the simplest case whiégre= V; V, = 0, that is,
the potential is equal t¥ (p) = V§(p — ). In this case the conditions for impenetrability of
the potential (70)—(73) do not contain the parametand are given by

Ky — BV =0. (74)
Explicitly, for j = 1 andj = 4 we have
sinh 2y, _ 1v sinhy, _ 1 Z (75)
2x4 T m Xq 2r m

The functionf (x) = sinhx/x is monotonically increasing for > 0, moreover,f(0) = 1.
Consequently, there is no solution of the equatf@m) = b provided thab < 1. Butifb > 1,
this equation has only one solutien > 0) which we denote by = ¢(b). Obviously, the
functiong(b) is monotonically increasing fdr > 1 and, by the way,
1 /1 vV 1 v
Dyy=Zgp(=-— DVy=p|=— -—]). 76
Xg (V) Zw(n m) Xg (V) <p<2n m) (76)
We carried out similar calculations fgr= 2, 3 and forj = 2 obtained the same results,

for j = 3 equation (74) has no solutions. Thus, foe 1,2, 3andV > V%) where

min?
v = m V& = ap2+m)"tm Ve = 2mm (77)

min
the condition for total reflection (74) for the potentiadp) = V§(p —a) has only one solution
xS (v), moreover, ¢ (V)/dV > 0.

It should be noted here that the effect of total reflection is valid for the one-dimensional
Dirac equation with scal@rpotential (and with superposition of scalar and veétpotentials)
as well [16]. Nevertheless, this effect only exists provided that the dimensionless coupling
constang is equal to 2;g = 2. Itis to be emphasized that the effect of total reflection for the
Dirac equation ag = 2 is valid for any value of rapidity (or momentum). In this paper the
effect of total reflection is valid for any value of the dimensionless coupling congtant if
the inequalityV /m > V) /m holds, butifV /m (V > Vi) is fixed this effect only exists for
a unique value of the rapidity, .

Now let us turn our attention to the general conditions for impenetrability of the potential
given by the superposition of twapotentials. To locate the poings, x,) where the potential
isimpenetrable let us fix the parametér Let us first consider the region of large values of the
parametet: (am > 1), where the conditions of impenetrability can be simplified as follows

(K = BJVAllK — B]Val =O. (78)

For j = 3 there is no solution of (78). Fgr = 1, 2, 4 there is solution” (V1) (x.” (V2))
provided thaty > V) (v, > V) It means, for example, that if both paramet&jsand

V, satisfy the following inequality:V1, > V\/) then there are two values of rapidigy
(am > 1) for which the effect of total reflection can be observed.

Second, let us consider the region of small values of the paraméier < 1) and not
too large values of the rapidity,. In this region equations (70)—(73) are simplified as well

and forj = 1, 2, 4 are given by

K9 —Bj(Vi+V2) =0. (79)
The solution of (79) is equal tp, = x.” (V1 + V2) (see (76)) provided that, + V, > V) It
means that itm <« 1 the impenetrability conditions for the superpositiors gfotentials (41)
is similar to the corresponding one for the potentidl + V>)3(p0) and this fact is physically
correct.
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Forj = 3,am « 1 and not too large value of rapidigy, equation (72) can be written as

follows
(K)? + (2xgma)*V1V, = 0. (80)

If V1.V, > 0 the last equation has no solutions (and (72) in the general case as well), if
V1- Vo < Oitcan be reduced tg(x,) = a/—V1V2 and hasy, = ¢(a+/—V1V>) as a solution
provided thati,/— V1V, > 1. Fora < /—V1V, there is no solution of equation (80). It means
that, if the parametear tends to zero, the total reflection for the superpositiod-pbtentials
(41) (j = 3) is also absent as for the singlgotential (28).

In the other regions of the plarie, x,) each of the equations has to be studied separately.
For instance, let us consider equation (70) fggma <« 1. Using the following notations
E>L¢>1:
sinh 2y, sinhwma Vs

%‘ = Vg = (81)
2xq Tma Tm
equation (80) can be reduced to
% v1v2 (82)

(& —v)(E —v2)
moreover, the regioté — 1)(¢ — 1) « 1 corresponds to the regigfyma < 1.
Let us considet in the following limit: ¢ = 1. Thus, ifv; + v > 1 then§ = vi + vy
and, hence, 2, = ¢(v1 + v2). If v1 + v < 1 then there is no solution. In another lirdit= 1

from (82) we have
V1V2

2 2
R & . B— 83
ST AT wa-w (83)
The inequalitygg > 1 is valid for one of the following cases:
() v12> 1,
(i) 0 <wv12 < 1;v1+vy > 1,
(i) v1 > Lvo<0;vy+vo < 1.
If the relation = f(2x) = 1+ 2x?/3 holds(x < 1) then from (82) we obtain
S P G (R (84)
¢ =t 3\1-v 1-w/]
Xq 2 Xq 2
1.5 ¥ 15+
a) 1r b) 1F
0.5 - 0.5 -
0 : ‘ 0 : :
0.5 1 1.5 0.5 1 1.5
a a

Figure 7. Solution of the condition for total reflection (70) for fixdd and Vo, m = 1 (j = 1):
@Vi=5V=10@12<1);(b) Vi =2,Vo =3 (v12 < 1;v1+v2 > 1).
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In figure 7 we represent results of the numerical calculation of the impenetrability condition
(70) for fixed vV, and V5.

To simplify the investigation of equations (70)—(73) it is necessary to fix the parameters

Xq @nda and solve these equations with respedt{e. For example, for the curves presented

in figure 6, that is, foV, = —V, = Vj, it follows from (70) and (72) that
sinh sinh
" - Tm 2 ! Tma i=1 (85)
[4qu sinf(rma) — 72 Slr'|2(2)(qma)]1/2
4 2m sinhy, coshrma
sin 2y,ma
It means that for; = 1 (and forj = 4 as well) there is such a value of the paramétgefor
which the total reflection is observed for any value of the ‘widilaind rapidityy,. Forj = 3

for all the points ¢, x,), except for the points on the curves@p,ma) = 0, this effectis also
present. Foy = 2 the region of values of the parameterandy,, where the total reflection

Vo =

Vo =

j=3 (86)

is absent for any value df;, = —V,, is determined in a complicated way.

For example, let us consider (85). ¥f = 2.19,a = 0.2, m = 1 thenV = 50. On the

other hand, it follows from (86) thelt = 50 if x, = 3.73,a = 0.2, m = 1. This fact is in
agreement with the results presented in figure 6.
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